Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Mol Liq ; 363: 119867, 2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-1937004

ABSTRACT

Thermally stable and labile proteases are found in microorganisms. Protease mediates the cleavage of polyproteins in the virus replication and transcription process. 6 µs MD simulations were performed for monomer/dimer SARS CoV-2 main protease system in both SPC/E and mTIP3P water model to analyse the temperature-dependent behaviour of the protein. It is found that maximum conformational changes are observed at 348 K which is near the melting temperature. Network distribution of evolved conformations shows an increase in the number of communities with the rise in the temperature. The global conformation of the protein was found to be intact whereas a local conformational space evolved due to thermal fluctuations. The global conformational change in the free energy ΔΔG value for the monomer and the dimer between 278 K and 383 K is found to be 2.51 and 2.10 kJ/mol respectively. A detailed analysis was carried out on the effect of water on the temperature-dependent structural modifications of four binding pockets of SARS CoV-2 main protease namely, catalytic dyad, substrate-binding site, dimerization site and allosteric site. It is found that the water structure around the binding sites is altered with temperature. The water around the dimer sites is more ordered than the monomer sites regardless of the rise in temperature due to structural rigidity. The energy expense of binding the small molecules at substrate binding is less compared to the allosteric site. The water-water hydrogen bond lifetime is found to be more near the cavity of His41. Also, it is observed that mTIP3P water molecules have a similar effect to that of SPC/E water molecules on the main protease.

2.
J Mol Graph Model ; 116: 108264, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914640

ABSTRACT

The structural variation of RNA is often very transient and can be easily missed in experiments. Molecular dynamics simulation studies along with network analysis can be an effective tool to identify prominent conformations of such dynamic biomolecular systems. Here we describe a method to effectively sample different RNA conformations at six different temperatures based on the changes in the interhelical orientations. This method gives the information about prominent states of the RNA as well as the probability of the existence of different conformations and their interconnections during the process of evolution. In the case of the SARS-CoV-2 genome, the change of prominent structures was found to be faster at 333 K as compared to higher temperatures due to the formation of the non-native base pairs. ΔΔG calculated between 288 K and 363 K are found to be 10.31 kcal/mol (88 nt) considering the contribution from the multiple states of the RNA which agrees well with the experimentally reported denaturation energy for E. coli α mRNA pseudoknot (∼16 kcal/mol, 112 nt) determined by calorimetry/UV hyperchromicity and human telomerase RNA telomerase (4.5-6.6 kcal/mol, 54 nt) determined by FRET analysis.


Subject(s)
COVID-19 , Escherichia coli , Humans , Molecular Dynamics Simulation , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , SARS-CoV-2/genetics , Thermodynamics
3.
J Phys Chem B ; 125(38): 10672-10681, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1409764

ABSTRACT

Understanding the dynamics of the SARS CoV-2 RNA genome and its dependence on temperature is necessary to fight the current COVID-19 crisis. Computationally, the handling of large data is a major challenge in the elucidation of the structures of RNA. This work presents network analysis as an important tool to see the conformational evolution and the most dominant structures of the RNA genome at six different temperatures. It effectively distinguished different communities of RNA having structural variation. It is found that at higher temperatures (348 K and above), 80% of the RNA structure is destroyed in both the SPC/E and mTIP3P water models. The thermal denaturation free energy change ΔΔG value calculated for the long-lived structure at higher temperatures of 348 and 363 K ranges from 2.58 to 2.78 kcal/mol for the SPC/E water model, which agrees well with the experimentally reported thermal denaturation free energy range of 2.874 kcal/mol of SARS CoV-NP at normal pH. At higher temperatures, the stability of RNA conformation is found to be due to the existence of non-native base pairs in the SPC/E water model.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Conformation , RNA , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL